
 MODULE SPECIFICATION

Template updated: September 2019

When printed this becomes an uncontrolled document. Please access the Module

Directory for the most up to date version by clicking here.

Module Code: COM713

Module Title: Advanced Data Structures and Algorithms

Level: 7 Credit Value: 20

Cost
Centre(s):

GACP
JACS3 code:
HECoS code:

I320
100956

Faculty FAST Module Leader: Jessica Muirhead

Scheduled learning and teaching hours 21 hrs

Placement tutor support 0 hrs

Supervised learning eg practical classes, workshops 27 hrs

Project supervision (level 6 projects and dissertation
modules only)

0 hrs

Total contact hours 48 hrs

Placement / work based learning 0 hrs

Guided independent study 152 hrs

Module duration (total hours) 200 hrs

Programme(s) in which to be offered (not including exit awards) Core Option

MSc Computing  ☐

MSc Computer Science  ☐

MSc Data Science and Big Data Analytics  ☐

Pre-requisites

None

Office use only

Initial approval: 22/07/2020 Version no:1

With effect from: 01/09/2020

Date and details of revision: 07/10/2022 AM0 change to number of weekly
portfolio tasks from seven to four

Version no:

https://www.glyndwr.ac.uk/modules/
https://www.hesa.ac.uk/support/documentation/jacs/jacs3-detailed
https://www.hesa.ac.uk/innovation/hecos

Template updated: September 2019

Module Aims

This module aims to give students a thorough grounding in the theories and

application of key computer programming concepts such as algorithms, abstract data types,

underlying data structures and their integration to produce efficient code. This allows students

to develop the knowledge and skills to be able to analyse problems and then design,

implement, and analyse, effective algorithmic solutions using a suitable programming

language.

Students will become familiar with the implications of algorithmic solutions in terms of

their computational complexity (space, time and logical) and develop a working

knowledge of optimal and approximate (including heuristic) solutions to problems. These will

be developed using object oriented coding and diagramming methodologies to demonstrate

proficiency in industry-standard programming techniques.

Module Learning Outcomes - at the end of this module, students will be able to

1

Demonstrate a critical understanding of programming paradigms

2
Analyse and interpret a range of problems and produce designs and models for
algorithmic solutions

3 Identify and evaluate problems and solutions in terms of their computational complexity

4

Explain and justify the structure of algorithms using computational thinking terminology

5
Implement computational solutions that demonstrate proficiency in a range of data
structures, algorithms and object-oriented programming techniques

6

Write, compile, execute, test and debug a non-trivial OO program, which maps the high-
level design onto concrete programming constructs.

Employability Skills
The Wrexham Glyndŵr Graduate

I = included in module content
A = included in module assessment
N/A = not applicable

CORE ATTRIBUTES

Engaged I

Creative I/A

Enterprising

Ethical I

KEY ATTITUDES

Commitment

Curiosity I/A

Resilient I

Confidence

Template updated: September 2019

Adaptability I/A

PRACTICAL SKILLSETS

Digital fluency I/A

Organisation A

Leadership and team working I

Critical thinking I/A

Emotional intelligence

Communication I/A

Derogations

None

Assessment:

Indicative Assessment Tasks:

This module is assessed through a series of four weekly Portfolio tasks designed to test
students’ understanding of the module content. At the end of the module, a final larger

activity will synthesise all of the students’ knowledge of data structures and algorithms.

Assessment
number

Learning
Outcomes to
be met

Type of assessment Weighting (%)

1 1,2,3,4 Portfolio 70%

2 5,6 Project 30%

Learning and Teaching Strategies:

Learning will be delivered through a practical approach, with a series of workshop sessions
combining short theory lectures with student-led activities to prepare solutions to simulated
problems. In-class sessions will be augmented with guided learning videos and suggested
reading to ensure students understand the industry challenges faced by programmers.

Syllabus outline:

1. Types of programming languages

2. Python programming language
3. Algorithms and complexity
4. Object-oriented programming
5. Stacks, queues and lists
6. Recursion
7. Searching and sorting
8. Tree and graph algorithms

Template updated: September 2019

Indicative Bibliography:

Essential reading

Romano, F., Baka, B., & Phillips, D. (2019). Getting Started with Python. Packt Publishing.

Other indicative reading

Barry, P. (2016) Head First Python: A Brain-Friendly Guide. O'Reilly Media, Inc.

Cormen, T.H. (2009) Introduction to Algorithms. 3rd ed. Cambridge, Mass: MIT Press.

Goodrich, M. T.,

Tamassia, R., & Goldwasser, M. H. (2013) Data structures and algorithms in Python. John

Wiley & Sons Ltd.

Knuth, D.E. (1997) The Art of Computer Programming, Volume 1: Fundamental Algorithms.

3ed. Addison-Wesley.

Miller, B., & Ranum, D. (2013) Problem Solving with Algorithms and Data Structures.

Franklin, Beedle & Associates. Available online:

https://runestone.academy/runestone/books/published/pythonds/index.html

Neapolitan, R.E. and Naimipour, K. (2014), Foundations of Algorithms. 5th ed. Jones &

Bartlett Learning.

Runestone (n.d.) Foundations of Python Programming. Available online:

https://runestone.academy/runestone/books/published/fopp/index.html Sedgewick, R. (2011)

Algorithms. 4th ed. Addison-Wesley.

Wentworth, P., Elkner, J., Downey, A. B., & Meyers, C. (2019) How to Think Like a Computer

Scientist. 3rd ed. Available online:

https://buildmedia.readthedocs.org/media/pdf/howtothink/latest/howtothink.pdf

